38 research outputs found

    Optimization of Location-Routing for the Waste Household Appliances Recycling Logistics under the Uncertain Condition

    Get PDF
    Waste household appliances and electronic products usually contain harmful substances which need scientific and reasonable collection, classification, processing, recovery and disposal to achieve sustainable and effective recycling and utilization. In recent years, due to the poor management of waste household appliances recycling logistics system, safety accidents occur frequently, which seriously harm the health and life safety of the society. This paper studies the risk management of recycling waste household appliances under uncertain conditions and establishes a risk measurement model under fuzzy population density. Considering the multi-stage and classification diversity of waste household appliances recycling logistics, the multi-objective location routing model and location - routing model are established respectively. Based on the model complexity analysis, the solution method of multi-objective model is designed. Finally, the validity of the model and algorithm is verified by examples and tests

    Adapt Anything: Tailor Any Image Classifiers across Domains And Categories Using Text-to-Image Diffusion Models

    Full text link
    We do not pursue a novel method in this paper, but aim to study if a modern text-to-image diffusion model can tailor any task-adaptive image classifier across domains and categories. Existing domain adaptive image classification works exploit both source and target data for domain alignment so as to transfer the knowledge learned from the labeled source data to the unlabeled target data. However, as the development of the text-to-image diffusion model, we wonder if the high-fidelity synthetic data from the text-to-image generator can serve as a surrogate of the source data in real world. In this way, we do not need to collect and annotate the source data for each domain adaptation task in a one-for-one manner. Instead, we utilize only one off-the-shelf text-to-image model to synthesize images with category labels derived from the corresponding text prompts, and then leverage the surrogate data as a bridge to transfer the knowledge embedded in the task-agnostic text-to-image generator to the task-oriented image classifier via domain adaptation. Such a one-for-all adaptation paradigm allows us to adapt anything in the world using only one text-to-image generator as well as the corresponding unlabeled target data. Extensive experiments validate the feasibility of the proposed idea, which even surpasses the state-of-the-art domain adaptation works using the source data collected and annotated in real world.Comment: 11 pages, 6 figure

    Observation of first-order quantum phase transitions and ferromagnetism in twisted double bilayer graphene

    Full text link
    Twisted graphene multilayers are highly tunable flatband systems for developing new phases of matter. Thus far, while orbital ferromagnetism has been observed in valley polarized phases, the long-range orders of other correlated phases as well as the quantum phase transitions between different orders mostly remain unknown. Here, we report an observation of Coulomb interaction driven first-order quantum phase transitions and ferromagnetism in twisted double bilayer graphene (TDBG). At zero magnetic field, the transitions are revealed in a series of step-like abrupt resistance jumps with prominent hysteresis loop when either the displacement field (D) or the carrier density (n) is tuned across symmetry-breaking boundary near half filling, indicating a formation of ordered domains. It is worth noting that the good turnability and switching of these states gives a rise to a memory performance with a large on/off ratio. Moreover, when both spin and valley play the roles at finite magnetic field, we observe abundant first-order quantum phase transitions among normal metallic states from charge neutral point, orbital ferromagnetic states from quarter filling, and spin-polarized states from half filling. We interpret these first-order phase transitions in the picture of phase separations and spin domain percolations driven by multi-field tunable Coulomb interactions, in agreement with Lifshitz transition from Hartree-Fock calculations. The observed multi-filed tunable domain structure and its hysteresis resembles the characteristics of multiferroics, revealing intriguing magnetoelectric properties. Our result enriches the correlated phase diagram in TDBG for discovering novel exotic phases and quantum phase transitions, and it would benefit other twisted moir\'e systems as well

    Layer-by-Layer Epitaxy of Multilayer MoS2 Wafers

    Full text link
    Two-dimensional (2D) semiconductor of MoS2 has great potential for advanced electronics technologies beyond silicon1-9. So far, high-quality monolayer MoS2 wafers10-12 are already available and various demonstrations from individual transistors to integrated circuits have also been shown13-15. In addition to the monolayer, multilayers have narrower band gaps but improved carrier mobilities and current capacities over the monolayer5,16-18. However, achieving high-quality multilayer MoS2 wafers remains a challenge. Here we report the growth of high quality multilayer MoS2 4-inch wafers via the layer-by-layer epitaxy process. The epitaxy leads to well-defined stacking orders between adjacent epitaxial layers and offers a delicate control of layer numbers up to 6. Systematic evaluations on the atomic structures and electronic properties were carried out for achieved wafers with different layer numbers. Significant improvements on device performances were found in thicker-layer field effect transistors (FETs), as expected. For example, the average field-effect mobility ({\mu}FE) at room temperature (RT) can increase from ~80 cm2V-1s-1 for monolayer to ~110/145 cm2V-1s-1 for bilayer/trilayer devices. The highest RT {\mu}FE=234.7 cm2V-1s-1 and a record-high on-current densities of 1.704 mA{\mu}m-1 at Vds=2 V were also achieved in trilayer MoS2 FETs with a high on/off ratio exceeding 107. Our work hence moves a step closer to practical applications of 2D MoS2 in electronics.Comment: 13 pages,4 Figure

    Rate-Induced Transitions in Networked Complex Adaptive Systems: Exploring Dynamics and Management Implications Across Ecological, Social, and Socioecological Systems

    Full text link
    Complex adaptive systems (CASs), from ecosystems to economies, are open systems and inherently dependent on external conditions. While a system can transition from one state to another based on the magnitude of change in external conditions, the rate of change -- irrespective of magnitude -- may also lead to system state changes due to a phenomenon known as a rate-induced transition (RIT). This study presents a novel framework that captures RITs in CASs through a local model and a network extension where each node contributes to the structural adaptability of others. Our findings reveal how RITs occur at a critical environmental change rate, with lower-degree nodes tipping first due to fewer connections and reduced adaptive capacity. High-degree nodes tip later as their adaptability sources (lower-degree nodes) collapse. This pattern persists across various network structures. Our study calls for an extended perspective when managing CASs, emphasizing the need to focus not only on thresholds of external conditions but also the rate at which those conditions change, particularly in the context of the collapse of surrounding systems that contribute to the focal system's resilience. Our analytical method opens a path to designing management policies that mitigate RIT impacts and enhance resilience in ecological, social, and socioecological systems. These policies could include controlling environmental change rates, fostering system adaptability, implementing adaptive management strategies, and building capacity and knowledge exchange. Our study contributes to the understanding of RIT dynamics and informs effective management strategies for complex adaptive systems in the face of rapid environmental change.Comment: 25 pages, 4 figures, 1 box, supplementary informatio

    Dynamic Domain Generalization

    Full text link
    Domain generalization (DG) is a fundamental yet very challenging research topic in machine learning. The existing arts mainly focus on learning domain-invariant features with limited source domains in a static model. Unfortunately, there is a lack of training-free mechanism to adjust the model when generalized to the agnostic target domains. To tackle this problem, we develop a brand-new DG variant, namely Dynamic Domain Generalization (DDG), in which the model learns to twist the network parameters to adapt the data from different domains. Specifically, we leverage a meta-adjuster to twist the network parameters based on the static model with respect to different data from different domains. In this way, the static model is optimized to learn domain-shared features, while the meta-adjuster is designed to learn domain-specific features. To enable this process, DomainMix is exploited to simulate data from diverse domains during teaching the meta-adjuster to adapt to the upcoming agnostic target domains. This learning mechanism urges the model to generalize to different agnostic target domains via adjusting the model without training. Extensive experiments demonstrate the effectiveness of our proposed method. Code is available at: https://github.com/MetaVisionLab/DDGComment: Accepted by IJCAI 202
    corecore